Draw a Circle With Shaded Region

FIND Expanse OF THE SHADED REGION OF A Circumvolve

Example 1 :

The inner part of an athletics runway is backyard. Find the area of the lawn.

Solution :

Area of backyard

=  Area of rectangle + 2(Area of semicircle)

Length  =  100 m, width  =  65 m

radius  =  65/2  ==>  32.5 chiliad

Area of rectangular lawn  =  Length × width + 2(∏r 2 /ii)

=  (100 × 65) + [22/vii × 32.5 × 32.5]

=  6500 + 3319.64

=  9819.6  m 2

Expanse of shaded region  =  9820 m2

So, area of lawn is 9820 chiliad2.

Case two :

A door has the dimensions shown.

(a)  How loftier is the door at its highest point ?

(b)  What is the area of the door in square meters ?

Solution :

(a)  From the picture, the door consist of rectangle and a semicircle.

=  (180 + 40) cm

=  220 cm

220 cm high is the door at its highest bespeak.

(b)

Area of shaded region

=  Area of rectangular door + Area of semicircle

Length  =  180 cm  ==>  ane.eight 1000

Width  =  80 cm  ==> 0.8 chiliad

Diameter (d)  =  80 cm

Radius  =  40 cm  ==>  0.40 m

=  (1.8 × 0.8) +  [(22/7 × 0.4 × 0.four)/2]

=  1.44 + 0.2514

=  1.69 m2

So, area of the door is 1.69 mii.

Example 3 :

Discover the expanse of the shaded region.

Solution :

Area of shaded region

=  Surface area of rectangle - Area of circle

Length  =  four m, Width  =  2.6 m

d  =  2 m and r  =  1 m

Area of shaded region  =  Length × width - ∏r two

=  (4 × 2.vi) - ( 22/7 × 1 × i)

=  (10.4 – 3.14) m 2

Expanse of shaded region  =  7.26 one thousand 2

And so, area of the shaded region given above is7.26 1000 2.

Example 4  :

A circular table summit has a bore of 1.6 m. A rectangular tablecloth 2 g b y 2 m is placed over the table superlative. What area of the tablecloth overlaps the table ?

Solution :

Overlapping area

=  Area of rectangular tablecloth - Area of circular tabular array peak

Length  =  2 m, width  =  2 1000

Diameter d  =  1.6 k and radius  =  0.viii one thousand

Overlapping area  = Length × width - ∏r 2

=  (2 ten 2) -(22/7 × 0.eight × 0.8)

=  (4 - 2.0114) mtwo

Overlapping area  =  1.98 gii

So, Area of the tablecloth is 1.98 mii

Example v :

Consider a square within a circle.

(a)  Detect the area of:

i) the circle

ii) the shaded triangle

iii) the square.

(b) What percentage of the circle is occupied by the square ?

Solution :

(i)  From the picture given radius of the circle is x cm.

Area of circle  =  ∏r2

=  (22/7 × 100) cm 2

Area of circle  =  314 cm2

(ii) the shaded triangle

Past cartoon a diagonal for he square, it divides the square into two right triangles.

Area of triangle  =  one/ii  b  h

=  1/2 x ten

=  50 cm2

(iii) the foursquare

length of diagonal  =  xx cm

Expanse of square  =  1/ii . dtwo

=  1/ii × 20 × xx

Area of foursquare =  200 cm ii

  =  200 cmtwo

(b)  Percentage  =  (Expanse of square/Area of circle) × 100

=  (200/314) × 100

=  0.6369 × 100

=  63.69%

So, 63.7% of circle is occupied by the foursquare.

Example half dozen :

(a)  Find the shaded area.

(b) Find the sum of the perimeters of the two circles.

Solution :

(a)  Area of shaded region

=  Area of big circumvolve – Expanse of small circle

Let "R" and "r" be the radius of large and pocket-sized circles.

R  =  10/2  ==>  v m

r  =  5/2

Surface area of shaded region  =  Area of large circumvolve - Expanse of small circumvolve

= ∏R two -∏r 2

=∏(25-(5/2)two)

= ∏(25-(25/four) )

=  (22/7) (75/4)

Area of shaded region  =  58.92 m2

b) Sum of the perimeters of the two circles

=  Perimeter of large circle + Perimeter of small circle

= two∏R+ 2∏r

=  two∏(R+r)

=  two(22/7) (5+five/two)

=  (22/7)(15)

=  47.fourteen m

The sum of perimeter of circles is 47.14 1000.

Example 7 :

A circular carpet is laid on a tiled flooring. Discover

a) the area of the rug

b) the visible expanse of the tiled floor.

Solution :

Radius r  = 2.4/2  ==> one.2 m

Area of carpeting  =  ∏r2

=  ∏ × 1.2 × one.ii

=  (22/7 × 1.44) m2

=  4.525 m2

Area of carpeting  =  4.52 mtwo

b) the visible surface area of the tiled flooring

=  Expanse of tiled flooring – Area of rug

Length  =  5.2 m, Width  =  3.v m

=  (5.2 × iii.5) - 4.52

=  18.2-4.52

=  13.68 mtwo

And then, the visible area of the tiled floor is 13.68 m2

Instance 8 :

A gardener is making a path using viii cylindrical concrete pavers. Each paver has a radius of 20 cm and is 5 cm thick.

(a)  Detect the total surface area of the tops of the pavers.

(b)  Detect the total volume of the pavers

Solution :

Radius of pavers (r)  =  20 cm

r  =  (20/100) k

r  =  0.2 m

Expanse of top viii pavers  =  8(∏rtwo)

=  8(22/7 × 0.2 × 0.two) mtwo

=  8(0.125) yardtwo

=  1.005 m2

=  1.01 mtwo

Total area of the tops of the pavers is i.01 grand2.

b) r  =  0.2 1000

pinnacle (h)  =  5 cm  ==> 0.05 yard

 Volume of the pavers  =  eight(∏riih)

=  8(22/7 × 0.ii × 0.2 × 0.05)

=  8(0.044/7)

=  8(0.006285) m3

=  0.0503 m3

Book of the pavers  =  0.0503 thousand3

Apart from the stuff given above, i f you lot need any other stuff in math, delight use our google custom search here.

Kindly mail service your feedback tov4formath@gmail.com

We always appreciate your feedback.

© All rights reserved. onlinemath4all.com

cobbclawaste.blogspot.com

Source: https://www.onlinemath4all.com/find-the-area-of-the-shaded-region-of-a-circle.html

0 Response to "Draw a Circle With Shaded Region"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel